
Hidden in plain sight:
VLMs overlook their visual representations

Stephanie Fu
UC Berkeley

Tyler Bonnen
UC Berkeley

Devin Guillory
UC Berkeley

Trevor Darrell
UC Berkeley

Evaluation 
Visual VLM

DINOv2 

CLIP 

chance 

A
cc

ur
ac

y 

Results Task (e.g., correspondence) 

A

B
C

D

REF DINO 

DINO 

LLM 

DINO proj 

A

VLM Evaluation 

Visual Evaluation 

C

Which point best 
corresponds to REF?

Figure 1: Evaluating vision language models (VLMs) alongside their vision encoders reveals a
failure to utilize visual information. To assess VLMs’ visual abilities, we compare their performance
to the accuracy supported by a direct readout of their visual encoders. Using ‘vision-centric’ tasks
(e.g., visual correspondence), we compare typical VQA-style VLM evaluation (center, bottom) with
vision-only methods (center, top). Across tasks, performance plummets from the ‘Visual’ to ‘VLM’
evaluations, often from near-ceiling to random chance. We study this trend by analyzing vision
representation quality, prompt sensitivity, and the LLM’s ability to leverage visual information.

Abstract

Language provides a natural interface to specify and evaluate performance
on visual tasks. To realize this possibility, vision language models (VLMs)
must successfully integrate visual and linguistic information. Our work
compares VLMs to a direct readout of their visual encoders to understand
their ability to integrate across these modalities. Across a series of vision-
centric benchmarks (e.g., depth estimation, correspondence), we find that
VLMs perform substantially worse than their visual encoders, dropping
to near-chance performance. We investigate these results through a series
of analyses across the entire VLM: namely 1) the degradation of vision
representations, 2) brittleness to task prompt, and 3) the language model’s
role in solving the task. We find that the bottleneck in performing these
vision-centric tasks lies in this third category; VLMs are not effectively using
visual information easily accessible throughout the entire model, and they
inherit the language priors present in the LLM. Our work helps diagnose
the failure modes of open-source VLMs, and presents a series of evaluations
useful for future investigations into visual understanding within VLMs.

1 Introduction

Vision language models (VLMs) are designed to harness the power of both large language
models (LLMs) and large-scale vision encoders to perform multimodal tasks. Open-source
VLMs often comprise three main components - a pretrained vision encoder, projector, and
LLM - and offer a flexible interface to specify visual tasks simply through a text prompt. It
has also been suggested that VLMs also provide a novel paradigm for both understanding
the representations of vision models and leveraging them for downstream applications
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Figure 2: Comparing standard visual evaluation to VLMs across vision-centric tasks. Shifting from
a standard vision evaluation strategy to a VLM evaluation results in a performance drop, often to
chance-level accuracies. Additionally, the vision encoders that perform best at a task (often DINOv2)
are not the same vision encoders in more performant VLMs.

Tong et al. (2024a). Nonetheless, the behavior of VLMs in vision-centric tasks reveals serious
issues with the integration of vision and language in these models, and warrants caution in
drawing conclusions about their underlying vision representations.

Open-source VLMs excel at many tasks, especially ones reliant on expert-level knowledge
within the LLM. However, when VLMs need to rely solely on the image and not on back-
ground knowledge, they exhibit much worse, often random chance-level, performance Tong
et al. (2024a); Fu et al. (2024). These results are especially puzzling when compared with
prior work reporting that large vision models - the same ones embedded in VLMs - excel on
many of these ‘vision-centric tasks’ when probing their representations Banani et al. (2024).

Additionally, we observe no correlation in performance between vision encoders and their
analogous VLMs on vision-centric tasks; the strongest vision representations (often DINOv2
Oquab et al. (2024)) tend to underperform when used within a VLM Tong et al. (2024a);
Banani et al. (2024). We find that these two observations - the consistent accuracy drop and
unreliable rank-ordering of vision model performance - are prevalent even in state-of-the-art
open-source VLMs. Why do we observe such a disconnect between the strength of vision
representations and their contributions to VLM capabilities?

To better understand this phenomenon, we compare VLMs to their visual encoders and
diagnose these discrepancies. We define our testbed to be ‘vision-centric’ tasks: those
solvable purely from visual input, independent of domain expertise. This removes reliance
on LLM knowledge and focuses more on the vision representations. We compare VLMs to
their visual backbones across diverse vision-centric tasks from CV-Bench Tong et al. (2024a),
BLINK Fu et al. (2024), and MOCHI Bonnen et al. (2024). These tasks span low- to high-level
visual abilities, single/multi-image inputs, and different visual prompting strategies. We
analyze three potential failure points: vision representation quality, sensitivity to the prompt,
and the language model’s ability to use visual representations. Our key findings are:

1. Shifting from standard visual probing strategies to a VLM-based evaluation results
in a universal drop in performance, often to random chance. This trend persists
across pretraining strategies for vision encoders, and does not preserve the rank-
ordering of models on vision-centric benchmarks.

• Additionally, vision representations throughout projector and LLM layers do
not degrade and can still solve the task with a visual probing strategy.

2. Prompt-tuning the VLM improves performance marginally, but with diminishing
improvements and does not close the gap with standard vision evaluation strategies.

3. The LLM’s ability to use its vision representations is a limiting factor in VLM
performance. Across most tasks, finetuning the LLM results in a higher accuracy
than finetuning the projector or vision encoder.

• VLM answer distributions largely reflect their blind answers. Finetuning the
LLM (as opposed to the projector or ViT) also best overcomes these biases.

Our work demonstrate that VLMs fail to utilize representations easily-accessible within their
visual backbones (and throughout the whole VLM), and that improvements to the LLM’s
ability to use them offers the most promising returns for vision-centric capabilities.
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Figure 3: We find the same trends as in Fig. 2 for common open-source VLMs. We also note that these
VLMs instruction-tune their vision encoders along with the rest of the VLM, so they are designed to be
most performant when used in tandem with their projector and LLM. Nevertheless, we still see higher
task performance when probing the vision representations alone than when querying the VLM.

2 Evaluation Setup

To study the effect of evaluation strategy on task performance, we evaluate 4 different vision
backbones: DINOv2 L/14 (self-supervised vision-only pretraining) Dosovitskiy et al. (2021);
Steiner et al. (2022), ViT-IN1k L/16 (supervised vision-only pretraining on ImageNet Deng
et al. (2009)), and CLIP L/14 and SigLIP L/14 (both vision-language pretraining). We use
checkpoints from Karamcheti et al. (2024), which pairs each vision backbone with Vicuña
v1.5 Chiang et al. (2023). The projection layers are trained for vision-language alignment
with the LLaVA v1.5 data mixture Liu et al. (2023), with the ViT and LLM components kept
frozen. As a result, the vision encoder weights in each VLM are identical to the original ViTs,
allowing us to properly ablate the use of an LLM decoder while keeping the vision part
constant. However, to demonstrate that these trends generalize, we also evaluate on more
widely-used VLMs: Qwen-VL Bai et al. (2023), Phi-3-V Abdin et al. (2024), and InternVL
Chen et al. (2024). These models also use ViTs, but their vision encoders are especially
trained to be used in that VLM context.

We pick ‘vision-centric’ tasks - that is, tasks where the model’s ability to discern visual
characteristics of its inputs and does not rely on language-level knowledge or domain
expertise. These vision-centric abilities stem from the expressivity of the vision backbone
itself, and we frame all other components of our evaluation as a method to evaluate the
vision representations. See the Supplement for full evaluation details and task examples.

2.1 Depth Estimation

We evaluate depth estimation with the Depth Order task from CV-Bench Tong et al. (2024a).
In each example, we present an image with two bounding boxes around objects and ask
which is closer to the camera. To evaluate the vision encoder, we train a DPT head following
Banani et al. (2024); Ranftl et al. (2021) on the NYUv2 training set Nathan Silberman &
Fergus (2012) for 10 epochs. We then crop the predicted depth map to each bounding box
and compare average depth in each box to determine the object closer to the camera.

2.2 Correspondence-based Evaluations

The following three tasks, drawn from Fu et al. (2024), test for different forms of pixel-
matching. Given a reference image with a dot and a second image with four dots (labeled
‘A’, ‘B’, ‘C’, and ‘D’), the model must pick the option corresponding to the reference dot. To
evaluate the vision encoder, we compute cosine similarity between the patch features of the
reference and the four options, and choose the letter option with the highest similarity score.

Semantic Correspondence. We evaluate semantic correspondence with the SPair-71k
dataset Min et al. (2019) and keypoints from BLINK. This data tests for the model’s ability
to match object parts that visually look similar despite large variation within the object class
(e.g., left leg of two different animals, fronts of two different cars in different poses).

Object Affordance. We use BLINK’s Functional Correspondence benchmark, which uses
the FunKPoint dataset Lai et al. (2021). Each task consists of an image pair whose match
shares an object function (e.g., ‘handle’) with the reference point. Unlike Semantic Cor-
respondence, each example does not necessarily present objects from the same class and
instead focuses on the shared purpose of two object parts.
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Semantic Correspondence Low-level Matching Depth Estimation Object Affordances Art Style 3D Object Awareness

Visual VLM VLM
blind Visual VLM VLM

blind Visual VLM VLM
blind Visual VLM VLM

blind Visual VLM VLM
blind Visual VLM VLM

blind

DINOv2 0.536 0.225 0.298 0.819 0.170 0.251 0.887 0.653 0.597 0.411 0.155 0.154 0.675 0.530 0.446 0.598 0.315 0.311
IN-1k 0.428 0.304 0.316 0.719 0.287 0.243 0.870 0.640 0.593 0.380 0.178 0.168 0.744 0.530 0.440 0.482 0.311 0.313
CLIP 0.384 0.297 0.298 0.532 0.181 0.245 0.852 0.623 0.618 0.295 0.171 0.149 0.761 0.538 0.439 0.503 0.328 0.307

SigLIP 0.391 0.304 0.315 0.632 0.246 0.240 0.840 0.663 0.612 0.248 0.147 0.160 0.744 0.427 0.428 0.587 0.320 0.307

Table 1: Results of visual evaluation, VLM evaluation, and blind evaluation. Across all tasks
the visual evaluation approach performs better than both the VLM and blind evaluations by a wide
margin, despite substantial variation in vision encoder performance. Furthermore, we see that despite
DINOv2 being the highest performing encoder in 5 of 6 tasks it does not lead to the highest performing
VLM approach in any task, highlighting a rank order shift from standalone visual encoders to VLMs.

Low-level Matching. In addition to evaluating the ability to match pixels based on func-
tion or semantics, we want to understand how LLM decoding affects low-level pattern
matching. We use BLINK’s benchmark here Fu et al. (2024), which draws on HPatches
Balntas et al. (2017) containing image pairs of the same scene differing in illumination or
viewpoint. The ground truth is computed with the homographies provided in HPatches.

2.3 3D Object Awareness

We examine not only model adherence to physical truths but also alignment with complex
human visual judgments. To this end, we test for object-centric representations with the
MOCHI Bonnen et al. (2024) benchmark, where participants and models identify the image
containing a differnet object among 3 or 4 options. We evaluate VLMs through a multiple-
choice VQA format, and evaluate the vision encoder by computing pairwise cosine similarity
of CLS embeddings and choosing the example with the lowest average score.

2.4 Art Style

We evaluate models on the Art Style benchmark from Fu et al. (2024), which sources
data from WikiArt. Unlike previous VLM benchmarks on art style requiring domain
knowledge Yue et al. (2024), BLINK’s benchmark measures a model’s ability to match visual
characteristics without knowledge about artist name or historical context. Given a reference
image, the model selects which of two image options better matches its style.

To evaluate the vision encoder, we follow Gatys et al. (2015); Lu (2022) which perform
Neural Style Transfer by matching the inner product of CNN filter responses. Similarly, we
extract art style information by computing this inner product to obtain the Gram matrix of
last-layer ViT patch features. The resulting features capture spatially-decorrelated texture
information representing the art style of an image. The vision model then predicts by
choosing the image option with the lowest MSE between these style features. We evaluate
the VLM through a multiple-choice VQA format as specified by the BLINK benchmark.

3 Initial Observations

3.1 Large-scale vision encoders perform well

We report results in Fig. 2 and Tab. 3; large vision models perform well above chance
on all tasks (e.g., 88.7% on depth estimation). This performance is unsurprising, as prior
work has demonstrated that large vision encoders (e.g., DINOv2) excel at vision-centric
tasks. We also observe significant variation in performance between visual encoders, with
DINOv2 consistently outperforming others on all VQA tasks requiring an element of spatial
awareness (all tasks excluding ‘Art Style’). Our results corroborate prior work which
demonstrate that vision encoders extract representations useful on a variety of vision-
centric tasks Banani et al. (2024); Zhan et al. (2024). Moreover, the rank ordering of model
performance here is consistent with prior results; vision-only pretraining generates models
that often outperform those with vision-langauge pretraining on spatially-dependent tasks
Banani et al. (2024). We emphasize that, as our evaluation approaches are zero-shot except for
depth estimation where a DPT head is trained, the representations required for these tasks
are readily-accessible in these visual encoders. As such, task-relevant visual information
should also be easy to access for downstream models using these visual representations.
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3.2 VLMs perform far worse than their encoders

Our primary observation is the universal drop in performance when moving from a standard
visual evaluation strategy to a VLM: in many cases, performance degrades from near-ceiling
to chance levels as evidenced in Figure 2 and Table 3. The low-level matching task suffers the
steepest drop at 45.5%, and depth estimation drops the least (21.7%). These results indicate
that something - likely either the quality of visual representations or the ability to use them -
is lost between the vision encoder and the LLM output, as information easily-extractable
from vision representations seems to ‘disappear’ before the VQA task is completed.

Throughout this work, we focus our evaluations on a suite of VLMs that do not tune the
vision encoder, allowing us to vary the way that a fixed set of vision representations are
being used. However, we corroborate our results by also evaluating on commonly-used
VLMs: InternVL Chen et al. (2024), Phi-3-V Abdin et al. (2024), and QwenVL Bai et al. (2023).
As seen in Figure 3, we observe the same type of performance drop when switching from
probing the VLM’s vision encoder to a VQA task. We note one exception with InternVL:
when the vision representations themselves cannot easily complete the task, the VLM cannot
rescue performance. These results are especially compelling when considering that these
vision encoders were trained to be used within the corresponding VLM, not as a standalone.

3.3 VLMs change rank ordering of vision encoders

Our next observation comes from the change in the ranking of model performance, when
comparing a vision-only evaluation to VLM performance. In almost every task DINOv2
performs best when using a direct visual readout. This result is aligned with previous
benchmarking results across multiple vision backbones Banani et al. (2024); Zhan et al.
(2024), which find that DINOv2 excels at these tasks. However, when transitioning to a
VLM evaluation using the same visual encoders, DINOv2 experiences a disproportionate
decrease in performance for several tasks. This asymmetric drop leads to a different ranking
of which visual encoders enable the most capable VLMs. These VLM-based rankings have
already led to conclusions that CLIP-style pretraining strategies are the most promising for
VLMs Tong et al. (2024a). Our results suggest this might be a premature conclusion.

3.4 VLM choices reflect their ‘blind’ baselines

The chance-level performance of VLMs on these vision-centric tasks, alongside the near
ceiling performance of their visual encoders, raises the possibility that VLMs are not relying
on their visual inputs to generate choice behaviors. We explore this possibility first by
visualizing the distribution of multiple-choice answer outputs. Interestingly, the choice
behaviors of VLMs are non-uniform (Fig. 4, ‘with vision’). We next repeat all experiments in
each benchmark with a blank visual input to the VLM along with the prompt, and find that
the VLMs output answer distributions are uncannily similar to their ‘blinded’ counterparts
(Fig. 4, ‘no vision’). These results suggest that VLMs ignore images while inheriting the
biases within their LLM components. We also provide quantitative measurements of these
differences in distribution by measuring total variation (TV) distance in Table 4.3.1.
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Figure 4: VLM choice behavior reflects the biases of their LLMs. Here we visualize the distribution
of answers when models are presented with (blue) and without (orange) a valid image. We find that
behaviors largely reflect the pattern of choices in the blind baselines. We take this as evidence that
VLMs are not simply misuing their visual representations, but they inherit their blind biases.
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4 Analysis of VLM performance

4.1 Vision features maintain their integrity throughout VLM layers

One possible explanation for the poor VLM performance is the degradation of vision
representations — specifically, that transformations applied by the projector and/or LLM
layers may discard task-relevant visual information. If visual evaluation strategies remain
effective throughout the rest of the VLM, it would indicate that the relevant information
is preserved and accessible at every stage. Note that this is a sufficient but not necessary
condition; even if vision representations are not amenable to our probing methods, they
may still be useful to the LLM through a different algorithm. Nonetheless, this condition
is met; as shown in Fig. 5, vision representations remain intact as they pass through the
projector (gray region) and LLM (white region), suggesting that performance drops are not
due to a loss of visual information.
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Figure 5: Visual evaluations for intermediate VLM layers.
We probe vision representations throughout the projector
(gray region) and LLM (white region) layers, finding that
they generally preserve task-relevant information and show
no significant degradation.

We highlight two interesting
trends/exceptions: first, the largest
jumps in performance tend to
happen in the final layer of the
LLM. DINOv2’s vision represen-
tations retain signal in the Object
Affordance and Art Style tasks
until the last layer, where they
decline sharply. We also observe a
similar but smaller drop in all final
layers for Low-level Matching. We
hypothesize that these shifts come
from the LLM’s shift in priority
from preserving and attending
to useful features to generating a
natural language answer in the final
layer. Second, the VLM using an
ImageNet-supervised ViT (IN-1k) actually better encodes art style in later layers of the LLM,
yet its final performance is only 53%. This observation further emphasizes the high quality
of vision representations within the VLM and its mismatched VQA performance.

4.2 Prompt-tuning results in minimal improvements

01 5 10
# Embeds

0.2

0.4

0.6

Ac
cu

ra
cy

visual

Semantic
Correspondence

01 5 10
# Embeds

0.25

0.50

0.75

Ac
cu

ra
cy

visual

Low-level
Matching

01 5 10
# Embeds

0.6

0.8

Ac
cu

ra
cy

visual

Depth Estimation

01 5 10
# Embeds

0.2

0.4

Ac
cu

ra
cy

visual

Object Affordance

01 5 10
# Embeds

0.4

0.6

0.8

Ac
cu

ra
cy

visual
Art Style

01 5 10
# Embeds

0.4

0.6

Ac
cu

ra
cy

visual

3D Object
Awareness

IN-1k
DINOv2
SigLIP
CLIP

Figure 6: Prompt-tuning evaluation. We tune [1, 5, 10] prefix embeddings and compare results with
the original performance (x=0) and visual evaluation ceiling (dotted line). We observe minimal returns
that diminish after 1-5 prefix embeddings.

If vision representations are not the primary culprit of low VLM performance, is it possible
that the models are very sensitive to how they are prompted? We evaluate this possibility
by introducing learnable prefixes passed along with the original prompt embeddings.
Following Lester et al. (2021), we prepend the original prompt embeddings with randomly-
initialized trainable vectors and tune on 1,000 VQA examples of the task. Keeping the VLM
and original prompt frozen, we minimize cross-entropy between the next-token distribution
and ground truth. We report results in Fig. 6, and training details in the Supplement.

We find that adding a single prefix embedding improves performance only marginally (Fig.
6), especially considering how VLM performance is hovering around chance. As shown in
the same figure, tuning additional (5, 10) prompt embeddings does not continue improving
performance. Our results indicate that VLMs still struggle to successfully perform vision-
centric tasks despite having an encoding of the task at hand, eliminating sensitivity to input
prompt as a performance bottleneck.
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Figure 7: We find that tuning the LLM (as opposed to the projector layers or the ViT) on each task, with
the same parameter count in each setting, provides the largest performance increase. Taken together
with Fig. 8, these results provide evidence that the LLM’s ability to use its visual representations is a
bottleneck in succeeding on vision-centric tasks.

4.3 The language model underutilizes its vision representations

Having ruled out degradation of vision representations with the VLM (Sec. 4.1) and the
sensitivity to prompt formulation (Sec. 4.2) as performance bottlenecks, we now examine the
role of the LLM itself. We finetune the individual components of the VLM - the ViT, projector,
and LLM - on 5,000 examples of each vision-centric task. Using the same VQA format as
our evaluation suite, we apply LoRA-tuning while controlling tunable weight matrices to
ensure equal parameter counts across components (16.7M parameters, equivalent to full
projector fine-tuning). See the Supplement for further training and implementation details.

Difference between LLM-tuned and original attention maps

Figure 8: Visualizing the difference between atten-
tion maps before and after fine-tuning the LLM, we
observe an increase in attention at the points of inter-
est (REF, A, B, C, D) for correspondence tasks. These
points are most salient in attention layers 4-6; here
we visualize layer 4 for Object Affordance (left) and
Semantic Correspondence (right).

As shown in Fig. 7, tuning the LLM pro-
vides the largest gains in performance over
tuning the projector or ViT layers. To
better understand this effect, we analyze
attention shifts over DINOv2 representa-
tions after fine-tuning. In correspondence
tasks, fine-tuning enhances attention over
multiple-choice labels, reference points,
and other text (particularly in LLM layer 4).
Unlike projector or ViT tuning, which does
not consistently highlight these points in
any attention layer or head, LLM tuning
improves the model’s ability to find and
use vision representations at key regions.
We also note an exception in the 3D Object
Awareness task, where the performance
improvements are less notable. We hypoth-
esize two reasons: first, unlike other tasks requiring localized feature extraction (e.g., bound-
ing boxes, texture), 3D Object Awareness demands more abstract, variable features that
lightweight fine-tuning may not fully capture. Second, our ShapeNet-based data is not a
perfect reflection of the MOCHI benchmark, which includes ShapeNet renderings as well as
a broader range of objects and settings. More attention visualizations are provided in the
Supplement to further illustrate these effects.

4.3.1 Tuning the LLM alleviates the language prior

We observed in Section 3.4 that not only do VLMs fail on vision-centric tasks, they inherit
their language biases. Given the previous results that tuning the LLM best improves
performance, we revisit this observation by evaluating TV distance between prediction and
ground truth distributions. As seen in Table 4.3.1, the LLM-tuned models produce answers
with the lowest TV distance to the ground truth. The only exception is on Depth Estimation,
where the original VLM already closely matched the ground truth distribution.

Taking the results from Sections 4.3 and 4.3.1, we find that the language model is the limiting
factor in making accurate predictions for vision-centric tasks, and that its limitations come
from both a lack of attention on the salient visual regions and a heavy reliance on the biases
toward certain multiple choice answers present in the LLM. Note that we do not propose
training directly on the tasks as an overarching solution to the lack of VLMs’ abilities to
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use their visual representations; rather, we use this method to help localize failures in the
VLM and how improving the LLM’s ability to use its vision representations can overcome
its language prior and most effectively boost performance.

Semantic
Correspondence

Low-level
Matching

Depth
Estimation

Object
Affordance

Art
Style

3D Object
Awareness

Original 0.337 0.494 0.043 0.521 0.259 0.386
Blind 0.399 0.380 0.101 0.488 0.427 0.195

FT (ViT) 0.393 0.500 0.146 0.593 0.474 0.161
FT (projector) 0.391 0.364 0.040 0.391 0.118 0.105

FT (LLM) 0.078 0.121 0.103 0.190 0.071 0.069

Table 2: Total variation distance between VLM predictions and GT answers. Fine-tuning the LLM
on each task brings the distribution of multiple choice answers closer to the ground truth distribution,
lessening the effect of the language prior. Meanwhile, fine-tuning either the ViT or the projector layers
do little to improve the blind bias toward certain multiple-choice answers.

5 Related Work
Visual question-answering (VQA) tasks are commonly used to evaluate VLM performance
in response to an image and a text prompt. Of particular interest here are ‘vision-centric’
benchmarks Tong et al. (2024a); Fu et al. (2024), which often reformat computer vision tasks
into VQA benchmarks. For example, a multi-view correspondence task (Fig. 1) can be
converted into a multiple choice format by presenting a pair of images and asking questions
such as ”Which point in image two best corresponds to the reference point in image one—A,
B, C, or D?” This approach has been used to convert many computer vision tasks, including
depth estimation, object affordances, semantic and visual similarity, etc.

5.1 Vision-language models

Late-fusion VLM architectures have largely converged on three components: a vision
backbone, a language model processing image and prompt tokens, and an adapter aligning
the vision representations to language space. Architectures and training strategies vary
widely within this framework across model families such as LLaVA Liu et al. (2023), IDEFICS
Laurençon et al. (2024), PaliGemma Beyer et al. (2024), Flamingo Alayrac et al. (2022), and
more Shi et al. (2024); Fan et al. (2024); Awadalla et al. (2023); differences in backbone
choice, adapter design, and instruction-tuning all contribute to vastly different performance
patterns. Nevertheless, these models all rely on the existing representational power of
their vision and language backbones. Most contemporary VLMs choose a vision-language
pretrained vision encoder such as CLIP Radford et al. (2021) or SigLIP Zhai et al. (2023),
as they have been shown to perform well Karamcheti et al. (2024) and it is intuitive that
a model previously aligned to some language space would be well-equipped to serve in
multimodal contexts. Some works find ensembling vision backbones (or models specialized
for certain tasks) to work best, as they complement each other and provide more expressive
starting visual representations Tong et al. (2024b); Shi et al. (2024); Fan et al. (2024).

5.2 Studying VLM components

Recent works have questioned these design decisions and carefully studied the axes along
which the VLMs vary. Tong et al. (2024a); Karamcheti et al. (2024); Laurençon et al. (2024)
make several key findings about how VLM performance varies as a function of backbone
and adapter choice, instruction tuning, image resolution, and other factors. Importantly,
these works also study how VLM performance correlates with the strength of the vision and
language backbones but do not converge on a clear answer; while Karamcheti et al. (2024)
finds that VLMs built on top of more performant LLMs do not necessarily score higher on
VLM benchmarks, Laurençon et al. (2024) identifies the LLM as more of a bottleneck than
the vision backbone.

Each of these works analyzing VLM design axes distill their findings into a new family
of multimodal models that improve over existing ones on VQA-style benchmarks. Many
of these benchmarks emphasize the LLM’s existing knowledge and reasoning abilities in
tandem with the vision representations, yet interpret these results to reflect vision ability in
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the VLM Tong et al. (2024a); Karamcheti et al. (2024). We further explore how indicative
these benchmarks are of VLMs’ vision representations, focusing on ‘vision-centric’ tasks
that evaluate visual perception abilities and that can be decoupled from language.

5.2.1 Vision-centric VLM benchmarks.

Fu et al. (2024) introduces the BLINK benchmark, a collection of visual perception tasks that
can be solved by humans ‘within a blink’ but are still challenging for VLMs. BLINK casts
more traditional visual tasks (e.g., semantic correspondence, art style) in a multiple-choice
format to probe visual abilities through language and finds that VLMs still struggle at
these tasks. Similarly, Tong et al. (2024a) presents CV-Bench as a re-casting of standard
vision tasks (spatial relationship, object counting, depth order, distance) into a multimodal
context. Evaluations on CV-Bench reveal language-supervised models (e.g., CLIP, SigLIP)
as more performant vision backbones than self-supervised models (e.g., DINOv2, MoCov3
Chen et al. (2021)); these findings contrast with recent benchmarking with visual evaluation
strategies Banani et al. (2024); Zhan et al. (2024) which find the inverse relationship. Our
paper investigates the inconsistencies foreshadowed in these works, and further explores
how indicative these VLM benchmarks truly are of vision model performance.

6 Discussion

Despite their impressive performance on knowledge-based benchmarks, VLMs remain
in some respects unaware of their own ‘sight’. Our work highlights a critical disconnect
between the representations from vision encoders and their underuse within VLMs, leading
to markedly suboptimal performance on vision-centric tasks. While vision representations
perform well when evaluated independently, their integration into VLMs severely degrades
vision-centric capabilities and causes them to rely on their language priors.

Previous works have 1) attributed VLM limitations to vision encoder weakness and pro-
posed ensembling encoders to mitigate these shortcomings Karamcheti et al. (2024); Tong
et al. (2024b). Our work suggests that this strategy is unlikely to address the underlying
failures of VLMs to use their visual representations, as the vision encoder is not the bottle-
neck. Tong et al. (2024a) has also offered VLMs as an interface with which to evaluate visual
representations. While this strategy allows for a much broader range of benchmarking tasks,
we caution against drawing conclusions about vision representations when their VLM-based
evaluations produce 1) near-chance performance and 2) changes in rank-ordering compared
to a direct visual readout. While previous works have taken VLM results to suggest that
certain vision encoders consistently offer advantages over other types of visual encoders
(often, CLIP/SigLIP >> DINOv2), our results show a lack of correlation between vision
encoder rankings when using visual and VLM evaluation strategies. We suggest that the
perceived limitations of VLMs’ vision encoders may simply come from their misuse rather
than an inherent inability of the vision representations to perform the task at hand.

While our work has identified how poor performance in VLMs is a consequence of their
inability to integrate visual information into its linguistic components, that does not neces-
sarily imply that current visual encoders are sufficient for all visual tasks. In fact, there are
well-documented shortcomings of contemporary large-scale vision encoders. For example,
humans consistently outperform vision models on 3D shape inferences Bonnen et al. (2024),
indicating there there are still improvements needed. While we have argued above that the
failure modes of VLMs are better attributed to the visual-linguistic integration rather than
the failure of the visual encoder itself, we stand with prior work highlighting the importance
of developing stronger vision encoders, as their abilities work in tandem with a capable
LLM to succeed on vision-centric VQA tasks.

Finally, while we present a critical assessment of current VLMs, language remains a powerful
interface to specify and evaluate performance. Indeed, many tasks are difficult to specify
through an image alone, and language might allow us to probe models on a more diverse
and complex set of visual abilities. Yet, our results call for caution when making VLM design
choices or drawing conclusions about their visual abilities through language benchmarks,
as they may underestimate and misrepresent the actual capabilities of vision encoders.
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A Overview of task examples

Semantic Correspondence:    Which point is corresponding to the reference point?
VLM

Reference image

Visual

Reference image

Both

Reference image

Low-level Matching:    Which point is corresponding to the reference point?

Reference image Reference image Reference image

VLM Visual Both

Depth Estimation:   Which bounding box is closer to the camera taking this photo?
VLM Visual Both

Ground Truth
Visual answer

VLM answer

Object Affordance:     Which point is corresponding to the reference point?
VLM

Reference image

Visual

Reference image

Both

Reference image

Art Style:    Which image has the more similar art style to the reference?
VLM

Reference image

Visual

Reference image

Both

Reference image

3D Object Awareness:   Which image depicts a different object from the others?
VLM Visual Both

Figure 9: Example failure cases for VLMs (left), vision encoders (center), and both (right). We
observe a few common failure modes for both evaluation strategies: on correspondence-based tasks,
similar local structure may confuse the model (see Low-level Matching: stone wall and colorful
squares). Additionally, some objects or object parts of interest may be too small to be individually
encoded in high fidelity (see Semantic Correspondence: dog ear, and Depth Estimation: small vehicles).
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B Multi-image VLM inputs

B.1 Evaluation setup

Certain VLM architectures have the native ability to handle multi-image inputs without
needing to stitch them into a single input. As checkpoints for these architectures are
not released with multiple visual encoder backbones, they are not appropriate for the
direct comparison methods provided in the main paper. However, they offer insights into
the upper bound of current VLM performance on some vision centric tasks and remove
any possible failure modes associated with the image-stitching method. We focus on the
performance for 3D Object Awareness task. The models we examine are LLaVA-Next Liu
et al. (2024), Phi-3 Abdin et al. (2024), and Qwen-VL Bai et al. (2023). We follow the multi-
image prompting methods of each codebase. The following prompt is used for all of the
VLMs, with n modulated for the correct number of image inputs:

Given n images, all but one of them depicts the same object from a different
angle. Can you tell which image is the odd one out? Select from the following
choices. (A) the first image (B) the second image (C) the third image
Answer with the option’s letter from the given choices directly.

B.2 Results

LLaVA-Next Phi-3 Qwen-VL Qwen-VL 1Shot

0.340 ± 0.02 0.320 ± 0.02 0.430 ± 0.02 0.452 ± 0.02

Table 3: Performance of LLaVA-Next, Phi-3, Qwen-VL, Qwen-VL 1 Shot models on the
3D Object Awareness task. We find that Qwen-VL performs the best and significantly
above chance, and improves slightly with one in-context example. However, these results
do not account for the visual-VLM gap observed in the main paper’s results.

As shown in Table B.2, we see that only one model, Qwen-VL, performs considerably better
than random chance (= 0.325) across the tasks and models explored. Furthermore we
see that performance continues to improve when in-context learning is used to extend the
best performing approach to the 1-shot setting. These results show that the state-of-the-art
open-source VLMs, when given proper multi-image inputs, can perform above random
chance but still do not account for the gap between VLM and visual evaluation strategies.

C Evaluation details

For all our evaluations in the main paper, we use four VLMs from the suite of models
provided by Prismatic VLMs Karamcheti et al. (2024). These models have corresponding
vision backbones found in the timm library (except the CLIP vision model, which we source
from the openclip library):

VLM (Prismatic) Vision backbone (timm and openclip)

in1k-224px+7b vit large patch16 224
dinov2-224px+7b vit large patch16 224
clip-224px+7b ViT-L-14/openai

siglip-224px+7b vit large patch16 siglip 256

Each VLM is made up of a vision backbone, Vicuña v1.5 Chiang et al. (2023) as the LM
backbone, and a projector module (2-layer MLP). The vision and language components are
frozen, while the projector is trained on the LLaVA v1.5 pre-training set (refer to Karamcheti
et al. (2024)’s single-stage training procedure).

We preprocess VLM image inputs with the model’s default ‘letterbox padding’ scheme to the
desired dimensions (specified in the task descriptions below), which is the same procedure
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as performed by LLaVA v1.5 Liu et al. (2023). For the vision encoder-only experiments,
we perform a naı̈ve resize to the desired dimensions. Normalization is performed with
the same mean and std for each pair of models, and corresponds to the original model
specifications (e.g., ImageNet statistics for DINOv2). We use some basic ‘fuzzy-matching’ to
extract the letter choice from the VLM, allowing for some variance in output format.

Below, we describe details for each evaluation from the main paper.

C.1 Depth Estimation

For each sample, we resize the images to have a height of 1024px and use the prompts
provided by Tong et al. (2024a), which are of the following format:

Which object is closer to the camera taking this photo, the table (highlighted by
a red box) or the bookcase (highlighted by a blue box)? (A) table (B) bookcase
Answer with the option’s letter from the given choices directly.

To evaluate vision encoders, we train a DPT decoder following Banani et al. (2024) and apply
it to 4 layers uniformly spaced throughout the model. Specifically, we initialize the decoder
architecture introduced in Ranftl et al. (2021) and train on the NYUv2 depth training set
Nathan Silberman & Fergus (2012) for 10 epochs with the AdamW optimizer (lr= 5e-4, and
1.5 epochs of linear warmup with cosine decay).

Given a predicted depth map at inference time, we crop to the two query bounding boxes
and average the depths in each box (effectively getting an average depth of each object
in question). We acknowledge that the bounding box, without any proper segmentation
mask, also captures pixels not associated with the object (e.g., space in-between chair legs or
next to a tilted object), and that this simple evaluation method may actually under-estimate
the performance of the visual readout strategy. The final prediction from the vision model
comes from a comparison of these two scalar depth values.

We construct further examples to finetune the VLM by randomly sampling images from
Omni3D Brazil et al. (2023) and drawing bounding boxes over two random labeled objects
in the scene.

C.2 Correspondence-based Evaluations

The following details apply to the Semantic Correspondence, Object Affordance, and Low-
Level Matching benchmarks, which all follow the same task format.

Our VLM evaluations use the prompts provided by Fu et al. (2024), which are of the
following format (this one taken from the Semantic Correspondence task):

Humans can find corresponding points for different objects in the same category.
For instance, if there are images of two different cats, then the left ear tip
of one cat corresponds to the left ear tip of the other cat, and the right front
paw of one cat corresponds to the right front paw of the other cat. Given the
following two images, a reference point is annotated on the first image, labeled
with REF. You are given multiple red-circled points on the second image, choices
of "A, B, C, D" are drawn beside each circle. Select between the choices on the
second image and find the corresponding point for the reference point. Which
point is corresponding to the reference point? Select from the following choices.
(A) Point A (B) Point B (C) Point C (D) Point D
Answer with the option’s letter from the given choices directly.

We evaluate vision encoders first by locating the coordinates of ‘REF’, ‘A’, ‘B’, ‘C’, and ‘D’ by
visually matching the text and red circles in the query image. Then, we extract the last-layer
patch features of the ViT and sample floating-point coordinates of each red-circled point
(with bilinear interpolation). We then compute cosine similarity between the ‘REF’ point
and all other points, choosing the option with the highest similarity value as the final answer.
For both evaluation methods, we resize images to a height of 224px. This lower resolution
is required for VLMs to fit the stitched input image into its context length.
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We construct further examples to finetune the VLM by randomly sampling images from
the same datasets (SPair-71k, HPatches, and FunKPoint). We sample a reference keypoint
and four multiple choice options, superimposing the same red circles and labels as in the
evaluation benchmarks.

C.3 3D Object Awareness

We adapt the MOCHI benchmark Bonnen et al. (2024) to be a VLM task with the following
prompt, where n is 3 or 4:

Given n images, all but one of them depicts the same object from a different
angle. Can you tell which image is the odd one out? Select from the following
choices. (A) the first image (B) the second image (C) the third image
Answer with the option’s letter from the given choices directly.

In cases with 4 images, we add (D) the fourth image as an option in the prompt.

Our vision evaluation follows that of Bonnen et al. (2024), where the global CLS token is
extracted from the vision encoder and a pairwise cosine similarity matrix is computed. As
the final model prediction, we select the image with the lowest average similarity in the
matrix. For both evaluation methods, we resize images to a height of 224px. This lower
resolution is required for VLMs to fit the stitched input image into its context length.

To finetune VLMs for this task, we sample ShapeNet renderings from Xu et al. (2019); Chang
et al. (2015) and pose a 3-way multiple choice task.

C.4 Art Style

We evaluate VLMs with the following prompt, taken from the BLINK benchmark Fu et al.
(2024):

Some most common art painting styles include Realism, Impressionism,
Expressionism, Pop Art, and Cubism. Given the following images of art paintings,
use the first image as the reference image, and determine which one of the second
or the third image shares the same style as the reference image? Select from the
following choices. (A) the second image (B) the third image
Answer with the option’s letter from the given choices directly.

We evaluate vision encoders by computing the Gram matrices of the ViT’s patch features.
Specifically, we obtain patch features F for each image of dimension C x HW, and multiply
FFT to get a matrix G with spatial information removed, preserving mostly texture, or ‘style’
information.

While this method of obtaining a ‘style matrix’ for ViTs has been found to give blocky
style-transferred outputs and a smoother solution has been found by Lu (2022), we find that
this method still captures the texture-focused style information required for the task and
keep this simpler evaluation rather than a method tailored for high-quality style transfer
results.

See Figure 10 for examples of a simplified version of Gatys et al. (2015)’s neural style transfer,
where we optimize the original input image to minimize MSE(Gresult, Gstyle reference). For
both evaluation methods, we resize images to a height of 224px. This lower resolution is
required for VLMs to fit the stitched input image into its context length.

To finetune VLMs for the Art Style task, we sample images from WikiArt and create positive
pairs from two images with the same art style label. The negative example is randomly
chosen from all other art styles.

C.5 Few-shot evaluation details

We use a logistic regression classifier on CLS embeddings to evaluate a vision model f on the
3D Object Awareness task in a few-shot setting. Given 3 images {x0, x1, x2}, we compute
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Original Image

Style Reference Result

Figure 10: Two examples of ‘neural style transfer’: starting with the original image, we
adjust the pixels by minimizing mean squared error between Goriginal image and Gstyle reference.
The resulting image takes on the texture of the middle reference image, while retaining the
high-level structure of the landscape image.

pairwise differences | f (x0)− f (x1)| between images and label each difference vector with
a 1 if it contains the odd-one-out (0 otherwise). Then to perform inference for one data
point belonging to some condition, we train a logistic regression classifier on 75% of that
condition (where condition subsets are defined in Bonnen et al. (2024)) and evaluate on the
single data point. We repeat this procedure 10 times for each data point and report the mean
and standard deviation (which is zero) in the main paper.

To evaluate VLMs, we tune one prompt embedding. Using the same train/test split pro-
cedure for each condition as described above, we concatenate one randomly-initialized
embedding to the start of the prompt sequence (after the <BOS> embedding) and train
it on 75% of the condition. We run this optimization for 10 trials for each data point and
report the mean and standard deviation in the main paper. We use the Adam optimizer
with a learning rate of 3e-3 and train for 10 epochs.
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C.6 Additional attention visualizations

AttentionOrig - AttentionLLM

AttentionOrig - AttentionProjAttentionOrig - AttentionVision

AttentionOrig - AttentionLLM

AttentionOrig - AttentionProjAttentionOrig - AttentionVision

AttentionOrig - AttentionLLM

AttentionOrig - AttentionProjAttentionOrig - AttentionVision

AttentionOrig - AttentionLLM

AttentionOrig - AttentionProjAttentionOrig - AttentionVision

Figure 11: Attention difference visualizations for Functional Correspondence (top two) and
Semantic Correspondence (bottom two) tasks.
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D Additional failure examples

In Figures 12, 13, 14, 15, 16, and 17, we show additional non-cherrypicked examples from
each benchmark where only the VLM fails, only the vision encoder fails, or both fail.
Examples are chosen from models with DINOv2 as the vision backbone.

Ground Truth Visual answer VLM answer

Visual and VLM Failure cases: Semantic Correspondence

VLM Failure cases: Semantic Correspondence

Visual Failure cases: Semantic Correspondence

Figure 12: Which point in the image (right) best matches the semantics of the point in the
reference image (left)? Additional examples of VLM-only, vision encoder-only, and VLM +
vision encoder failures on the Semantic Correspondence task.
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Ground Truth Visual answer VLM answer

Visual and VLM Failure cases: Low-Level Matching

VLM Failure cases: Low-Level Matching

Visual Failure cases: Low-Level Matching

Figure 13: Which point in the image (right) best matches to the reference point in the
same scene (left)? Additional examples of VLM-only, vision encoder-only, and VLM +
vision encoder failures on the Low-level Matching task.
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Ground Truth Visual answer VLM answer

VLM Failure cases: Depth Estimation

Visual Failure cases: Depth Estimation

VLM and Visual Failure cases: Depth Estimation

Figure 14: Which bounding box contains the object closer to the camera? Additional
examples of VLM-only, vision encoder-only, and VLM + vision encoder failures on the
Depth Estimation task.
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Ground Truth Visual answer VLM answer

Visual and VLM Failure cases: Object Affordances

VLM Failure cases: Object Affordances

Visual Failure cases: Object Affordances

Figure 15: Which point in the image (right) best matches the function of the point in the
reference image (left)? Additional examples of VLM-only, vision encoder-only, and VLM +
vision encoder failures on the Object Affordances task.

Ground Truth Visual answer VLM answer

Visual and VLM Failure cases: Art Style

VLM Failure cases: Art Style

Visual Failure cases: Art Style

Figure 16: Which images (center or right) best matches the art style of the reference image
(left)? Additional examples of VLM-only, vision encoder-only, and VLM + vision encoder
failures on the Art Style task.
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Ground Truth Visual answer VLM answer

Visual and VLM Failure cases: 3D Object Awareness

VLM Failure cases: 3D Object Awareness

Visual Failure cases: 3D Object Awareness

Figure 17: Which image contains the odd-object-out? Additional examples of VLM-only,
vision encoder-only, and VLM + vision encoder failures on the 3D Object Awareness task.
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